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Abstract

Purpose—Chronic hypoxemia is the prime cause of fetal brain injury and long-term sequelae 

such as neurodevelopmental compromise, seizures and cerebral palsy. This study aims to 

investigate the impact of chronic hypoxemia on neonatal brains, and follow developmental 

alterations and adaptations non-invasively in a guinea pig model.

Materials and Methods—Thirty guinea pigs underwent either normoxic and hypoxemic 

conditions during the critical stage of brain development (0.7 gestation) and studied prenatally 

(n=16) or perinatally (n=14). Fourteen newborns (7 hypoxia and 7 normoxia group) were scanned 

longitudinally to characterize physiological and morphological alterations, and axonal myelination 

and injury using in vivo DTI, T2 mapping, and T2-weighted MRI. Sixteen fetuses (8 hypoxia and 8 

normoxia) were studied ex vivo to assess hypoxia-induced neuronal injury/loss using Nissl 

staining and quantitative reverse transcriptase Polymerase Chain Reaction methods.

Results—Developmental brains in the hypoxia group showed lower fractional anisotropy in the 

corpus callosum (−12%, p=0.02) and lower T2 values in the hippocampus (−16%, p=0.003) 

compared with the normoxia group with no differences in the cortex (p>0.07), indicating 

vulnerability of the hippocampus and cerebral white matter during early development. Fetal 

guinea pig brains with chronic hypoxia demonstrated an over-tenfold increase in expression levels 

of hypoxia index genes such as erythropoietin and HIF-1α, and an over 40% reduction in neuronal 

density, confirming prenatal brain damage.
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Conclusion—In vivo MRI measurement, such as DTI and T2 mapping, provides quantitative 

parameters to characterize neuro-developmental abnormalities and to monitor the impact of 

prenatal insult on the postnatal brain maturation of guinea pigs.
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INTRODUCTION

The developing fetal brain is vulnerable to numerous misadventures that may cause 

functional and behavioral deficits later in life. Many infants who survive very preterm birth 

develop neuronal and motor developmental deficits including spastic motor deficits such as 

cerebral palsy (1, 2) or cognitive, behavioral, attentional and socialization deficits (3–5). 

Increasing evidence suggests that one factor underlying many forms of fetal brain injury and 

abnormal brain development is oxygen deprivation, whether it occurs acutely (e.g., 

umbilical cord occlusion) (6–9) or chronically (e.g., impaired placental function and chronic 

fetal hypoxia) (10–13). Fetal neuropathology reflects both the severity and duration of these 

intrauterine insults, and the gestational age of the fetus at the time of insults in humans and 

experimental animal models (13, 14).

Both acute and chronic fetal hypoxia are relatively common complications associated with 

neuro-developmental abnormalities (13). Over 40% of intrauterine fetal or perinatal deaths 

are related to placental vascular problems (10). Acute hypoxic insults such as ischemia-

perfusion injury during the early- to mid-gestation, when neurogenesis and neural migration 

are at their peak, lead to a rapid reduction in oxygen delivery to the brain, death of cerebellar 

Purkinje cells, hippocampal pyramidal cells and cortical neurons, and a slowing of neural 

migration, e.g., in the hippocampus (13). Even a relatively brief period of fetal hypoxia can 

have a significant impact on the fetal brain. For example, death of susceptible neuronal 

populations in the cerebellum, hippocampus and cortex, and cerebral white matter damage 

in animal models have been reported (1, 15). However, the causes and timing of fetal 

hypoxia are usually unknown in individual cases. It is also unclear whether it is hypoxia 

alone or hypoxia in combination with other physiological changes that render the fetal brain 

vulnerable to damage. An improved understanding of the etiology of perinatal brain damage 

should allow the development of new strategies to intervene and reduce the burden of 

perinatal brain injury.

Guinea pigs are a good model for human pregnancy complications such as chronic fetal 

hypoxia (16), because unlike rodents, guinea pigs undergo substantial brain development 

prior to birth similar to humans, and also possess a similarity to humans in placental 

vascular structure and a relatively long gestation, allowing for intrauterine manipulations at 

specific developmental stages (17). Moreover, guinea pigs are amenable to postnatal 

behavioral and functional testing. Although guinea pig models have been used to study a 

variety of conditions because of their human similarities, the brain development of guinea 

pigs in health and disease is not well characterized. In a previous study, a guinea pig model 

of 14 days of chronic fetal hypoxia, beginning at 46 to 49 days of gestation, resulted in 
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selective brain injury in the cortex, hippocampus and thalamic nuclei; shorter exposures or 

milder degrees of hypoxia introduced later in gestation were proven less reliable as fetal 

brain growth was not altered, though histological damage was observed (16, 18).

MR relaxation times (especially, T1 and T2), related to tissue structure and the biophysical 

environment of brain water, have been widely used to characterize microstructural changes 

of brain tissue in various physiological and pathological conditions including aging, 

Alzheimer disease, Parkinson’s disease, and stroke. Diffusion tensor imaging (DTI) provides 

distinctive endogenous contrast for brain tissue delineation as well as information about 

myelination and axonal integrity (19, 20). DTI has also been used to demonstrate subtle 

abnormalities in stroke, multiple sclerosis, dyslexia and schizophrenia, as well as in 

developing brains of rodents and humans (21). Although these quantitative MR techniques 

provide insights into postnatal developmental changes in the brain after an acute episode of 

hypoxia, the effect of chronic fetal hypoxia on the newborn has not been described in guinea 

pigs to date. The purpose of this longitudinal study was to characterize the physiological and 

morphological effects of chronic fetal hypoxia on brain development in a well-established 

guinea pig model of intrauterine hypoxia using in vivo DTI, T2 mapping and T2-weighted 

MRI techniques.

MATERIALS AND METHODS

Animals

All animal care and procedures were performed according to the guidelines for the care and 

use of laboratory animals, and approved by the Institutional Animal Care and Use 

Committee (IACUC). Time-mated pregnant Hartley-Duncan guinea pigs (Charles River 

Laboratories International, Inc, Wilmington, MA) were housed in a Plexiglass chamber for 

14 days with room air estimated to be 21% O2 for the normoxia (NMX) group and with 

10.5% O2 for the hypoxia (HPX) group. Chronic fetal hypoxia was induced in guinea pigs 

during 13–21 days before birth (or 45–53 days of fetal life), which was at 46 – 49 days of 

gestation (about 0.7 gestation, term approximately 65 days), according to an established 

hypoxic model (18). A total of 14 newborn guinea pigs (7 HPX and 7 NMX; 2 males in each 

group) from four litters were used in the longitudinal MR study up to 6 weeks of age. 

Sixteen guinea pig fetuses (8 HPX and 8 NMX) were used to assess hypoxia induced 

neuronal injury and neuronal loss.

For MRI experiments, animals were anesthetized by a gas mixture (air:oxygen = 2:1, with 1 

– 2% isoflurane) delivered through a nose cone. The core body temperature was monitored 

using a rectal temperature sensor (Cole-Palmer, Vernon Hills, Illinois) and maintained at 38 

°C with a warm water circulation blanket. The respiratory rate and blood oxygen saturation 

were monitored using a respiration pillow (SA instruments, Stony Brook, NY) and a pulse 

oximeter (Nonin Medical, Plymouth, MN), respectively.

MRI protocol

All MR experiments were performed on a 9.4 T MR system with a Varian INOVA console 

(Agilent Technologies, Santa Clara, CA). The system was equipped with a 12 cm gradient 
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coil (40 G/cm, 250 µs; Magnex Scientific, Abingdon, UK). A custom-made quadrature 

surface radiofrequency coil was placed on top of the animal head to transmit and receive at 

400 MHz. The RF coil consisted of two geometrically decoupled loops, each 18 mm in 

diameter. DTI measurements were performed using a standard mono-polar diffusion 

weighted spin echo sequence (FOV = 2.5 × 2.5 cm2, matrix = 128 × 128, TR/TE = 1000/23 

ms, and diffusion gradients were applied along 6 different orientations, b = 832 s/mm2, NEX 

= 2, slice thickness = 1 mm, and total acquisition time ~30 minutes). MRI of T2 mapping 

was acquired using a multi-slice spin echo sequence: FOV = 2.5 × 2.5 cm2, matrix = 128 × 

128, TR = 1 s, TE = 12/24/36/48/60 ms, NEX = 2, slice thickness = 1 mm and total 

acquisition time =~20 minutes (~4 minutes for each TE). Both DTI and T2 MRI were 

acquired in identical slice positions, FOV and spatial resolution. High-resolution T2-

weighted images were acquired to quantify brain volume and to define regions of interest 

using a rapid acquisition with relaxation enhancement (RARE) sequence (FOV = 3.0 × 3.0 

cm2, matrix = 256 × 256, TR/TE = 4000/72 ms, NEX = 2, thickness = 1 mm, echo train 

length = 8, echo spacing = 18 ms and total acquisition time ~4 minutes). T2-weighted MRI, 

T2 mapping and spin-echo DTI data were acquired at four time-points, postnatal day 1 (P1), 

7 (P7), 28 (P28) and 42 (P42), from the 14 neonatal guinea pigs (7 HPX and 7 NMX), and 

the body weight was measured at 5 time-points: P1, P7, P14, P28 and P42.

Data analysis

Spin-echo DTI data were processed using the FSL diffusion toolbox (FDT) (22) with 

manually segmented brain masks, and parametric maps of fractional anisotropy (FA), mean 

diffusivity (MD), and axial and radial diffusivity were generated. The eddy current 

correction on DTI data was not necessary, because a non-EPI based SE sequence with very 

short readout duration, 2.5 ms, was used, and eddy currents were minimal due to the 

relatively low diffusion gradient amplitude (less than 40% of the maximum). T2 maps were 

calculated using linear fitting of the logarithm of each pixel value against TE values using 

ImageJ (23). Regional values for diffusion parameters (FA, MD and axial and radial 

diffusivity) were obtained from the regions of interest (ROI) placed in the corpus callosum, 

hippocampus, cortex and cingulate (Fig 2a). Regional T2 values were obtained from the 

ROIs placed in the hippocampus and cortex (Fig. 2a). ROIs for T2 maps and DTI parameters 

(except FA in the corpus callosum) were drawn over low resolution, long TE (60 ms) T2-

weighted MRI. ROIs for FA in the corpus callosum were drawn on the FA maps (Fig. 2b), 

which provide the best contrast of the corpus callosum to the background. Care was taken in 

drawing each ROI to prevent inclusion of areas surrounding the corpus callosum.

Brain structural changes were quantified by measuring the maximum brain width, mean 

cortical thickness and hippocampal volume using high resolution T2-weighted MRI (Fig. 

2a). Maximum brain width was measured at the widest part of the brain (Fig.2a, left). Mean 

cortical thickness was obtained by measuring the shortest distances between the corpus 

callosum and the outer brain surface at the locations in both hemispheres (Fig. 2a, right). 

Hippocampal volume was obtained by summing pixel volumes in the ROIs drawn over three 

or four consecutive slices of high resolution T2-weighted MRI.
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Neuron loss identification by Nissl staining

Fetal brains from both groups were removed intact and fixed in 4% paraformaldehyde 

overnight at 4 °C, cryoprotected in 30% sucrose for 2–3 days at 4 °C until no longer 

buoyant, and then embedded in OCT frozen tissue matrix for sectioning. Coronal sections 

were made at the interaural level of 6.72 mm to 5.40 mm (reference to bregma: from −2.28 

mm to −3.60 mm) of the fetal brain, and cut on a cryostat (−20 °C) at 8 µm thickness and 

mounted on slides.

The slides were used to quantify neuronal density using Nissl staining with Cresyl violet. 

Frozen slides were air dried for 1 hour, stained in Cresyl violet solution (0.1 % Cresyl 

violet) for 5 minutes, rinsed in distilled water, differentiated in 95% ethyl alcohol for 15 

minutes, dehydrated in 100% alcohol for 5 minutes twice, cleared in xylene for 5 minutes 

twice, and then mounted by resinous medium for the quantification. Each stained section 

was examined by a research team member (YD) with over 10 years’ experience using light 

microscopy, and neuron density in the fetal brain was quantified as previously reported (18).

Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR)

Hypoxia index genes (EPO and HIF1a) were used as fetal brain injury markers. mRNA 

expression was quantified by SYBR Green I (BioRad Laboratories, Hercules, CA) labeled 

quantitative real time Polymerase Chain Reaction (qRT-PCR) using mRNA extracted from 

specific brain structures using laser biopsies. Total RNA was isolated (RNeasy Mini Kit and 

RNase-Free DNase Set, Qiagen, Valencia, CA) and reverse-transcribed (Sensiscript RT 

Kits, Qiagen, Valencia, CA). The primer sequence for each gene target was performed by 

Beacon Designer 5.0 (BioRad Laboratories, Hercules, CA) using procedures described 

previously (24, 25). PCR parameters consisted of an initial denaturation at 95 °C for 180 

seconds, followed by 40 cycles at 95 °C for 30 seconds, annealing at 60 °C for 25 seconds, 

extension at 72 °C for 30 seconds, and 1 cycle at 72 °C for 7 minutes. The results of a melt 

analysis confirmed the specificity of the PCR amplification. PCR efficiency was 

demonstrated by the standard curve slope. Target gene mRNA was quantified by the delta-

delta CT (2-DDCt) method and normalized to the 18S subunit of rRNA (Applied 

Biosystems, Foster City, CA).

Statistical analysis

All measurement parameters including FA, MD, axial diffusivity, radial diffusivity, 

hippocampal volume, brain width, cortical thickness, and body weight for the HPX and 

NMX groups were compared using two-sample t-tests. Longitudinal comparisons were 

performed using one-sample t-test. Results are presented as mean ± standard deviation (SD). 

Differences between or within groups with p-values less than 0.05 were considered to be 

statistically significant.

RESULTS

Histological and biochemical characterization of hypoxia model

Photomicrographs of hippocampal sections with Nissl staining show a clear reduction of the 

total areas with the staining in the HPX group (Fig. 1A right) compared with the NMX 
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group (Fig. 1A left). Neuronal density quantified using the Nissl stained sections showed a 

more than 40% reduction (p < 0.05) in all three sampled brain regions of the HPX group 

compared with the NMX group (Fig. 1B). The mRNA expression levels of two injury 

markers, erythropoietin (EPO) and HIF-1α, showed over 10-fold elevation (p < 0.05) in the 

HPX group compared with the NMX group (Fig. 1C).

DTI measurements

FA values in the corpus callosum showed gradual increases during postnatal brain 

development from P1 to P42 in both NMX and HPX groups (Fig. 3a). The HPX group 

showed significantly lower FA values in the corpus callosum than NMX group shortly after 

birth to P7 (P1:−10%, p < 0.05; P7: −12%, p < 0.02). FA values in the hippocampus, 

cingulate or cortex showed no detectable developmental changes or group differences (p > 

0.07). MD values in the corpus callosum (Fig. 3b) and other areas such as the hippocampus, 

cortex and cingulate (data not shown), showed no detectable changes with advancing 

postnatal ages or group differences (p > 0.07). Similar to MD, axial diffusivity and radial 

diffusivity in the corpus callosum showed no age dependency or group differences (p > 

0.08).

T2 measurements

T2 values showed no longitudinal changes in the hippocampus and cortex of both groups 

during the first 42 days of life (Fig. 4). However, T2 values in hippocampal regions were 

significantly lower in the HPX group compared with those in the NMX group, particularly at 

P7 (p < 0.01) and P28 (p < 0.02) (Fig. 4a), while the difference at P1 did not reach statistical 

significance (p = 0.17). T2 values in the cortex did not differ between groups (p > 0.08) (Fig. 

4b).

Brain structural measurements

Body weight (Fig. 5a) increased rapidly more than threefold after birth during the 42 day 

period for both groups. Brain width and hippocampal volume increased steadily from P1 to 

P42 in both groups over 11% and 15%, respectively. Brain width and hippocampal volume 

showed similar patterns of changes for both groups over the first 42 days of post-natal life, 

an initial rapid increase followed by a slower increase (Fig. 5b and 5c). Although 

statistically not significant, overall brain width and hippocampal volume were consistently 

smaller in the HPX group compared with those in the NMX group. In contrast, cortical 

thickness did not change with advancing postnatal age, nor showed any difference between 

the HPX and NMX groups (Fig. 5d).

DISCUSSION

Quantitative T2 mapping and DTI techniques allow us to detect subtle yet significant 

changes of brain morphology and microstructure in a guinea pig model of chronic fetal 

hypoxia. This study describes the first in vivo characterization of brain development and the 

effect of fetal hypoxia, i.e., reduced T2 in the hippocampus and lower FA in corpus 

callosum, particularly in guinea pigs. Chronic fetal hypoxia during the major brain growth 

period resulted in decreased neuronal density and increased activation of hypoxia index 

Kim et al. Page 6

J Magn Reson Imaging. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



gene, corroborating the association between chronic hypoxia and fetal brain injury. Our data 

are consistent with previous findings of the effect of chronic hypoxia resulting in 

intrauterine growth restriction and neuronal loss in animal models, as well as findings in 

human fetuses with chronic hypoxia (26, 27). Furthermore, our data are consistent with 

previous studies of chronic hypoxia in fetal sheep showing significant delays in cell 

migration from the germinal to the pyramidal layers of the CA1 region in the ventral 

hippocampus and decreases of pyramidal neuron density by 35% (28).

Increases of FA values over time in the corpus callosum in both NMX and HPX groups are 

consistent with various processes occurring during brain development, which includes 

axonal myelination, decreased axonal tortuosity, removal of cell membranes along the 

longitudinal axis of axons, and increased axonal density or caliber (21,29–34). The finding 

of lower FA values in the corpus callosum of the HPX group compared with the NMX 

group suggests chronic fetal hypoxia delays myelination and white matter maturation as FA 

describes the degree of molecular displacement variability in space (ellipsoid eccentricity) 

and is related to the presence of oriented structures such as axons in white matter. Although 

the FA values in the corpus callosum of the HPX group gradually increased over time, 

overall FA values remained lower in the HPX group than those of the NMX group. The 

delayed myelination, white matter maturation and/or potential injury during the early 

developmental phase of the HPX group seems to diminish during postnatal development as 

the differences of FA values decrease overtime between the two groups.

Prior studies of the developing brain reported longer T2 values in young animals and gradual 

decreases of T2 values during brain maturation. In the mouse brain, this initial rapid 

decrease in T2 values occurs during the first 3 weeks (21). However, we observed no 

significant changes of T2 values during the first several weeks after birth, up to 6 weeks, in 

the hippocampus and cortex, which is not surprising because brain growth spurt of guinea 

pigs occurs in utero during the third trimester and brain weight reaches over 80% of adult 

brain weight in utero unlike any other animals (35). Lower hippocampal T2 values in the 

HPX group compared with the NMX group suggest fetal hypoxia alters postnatal brain 

maturation. T2 values in the hippocampus at P28 were still significantly lower in the HPX 

group than the NMX group, and remained lower at P42. Studies at later ages are needed to 

determine whether the lower T2 in the HPX group can be recovered as the brain further 

matures. Reductions of T2 values in the brain have been associated with decreased cerebral 

blood flow in rats (36), iron deposition in humans (37), and iron deposition that co-localizes 

with beta-amyloid plaque deposition in transgenic mouse models of Alzheimer disease (38, 

39). Considering very low levels of non-heme iron levels in the neonatal brains, the effect of 

iron might not be a significant factor for the observed T2 reduction, but rather the effect of 

lower cerebral blood flow might be more likely the cause of the T2 reduction because loss of 

neurons and brain atrophy have been associated with reduced cerebral blood flow in various 

pathological conditions including neurodegenerative diseases (40).

This study provides quantitative measurements of the effects of chronic fetal hypoxia on 

brain structure such as hippocampal volume, brain width and cortical thickness during brain 

development of guinea pig neonates from birth to young adulthood. The hippocampal 

volumes in HPX were consistently smaller than those in the NMX group. These findings are 
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consistent with the demonstration of significant neuronal loss and reactive gliosis in those 

areas of the guinea pig neonates in this study as well as in previous findings (18).

A limitation of this study is that analysis of other brain structures such as the striatum was 

not feasible due to the use of a surface coil to increase the sensitivity of MR measurement. A 

whole brain acquisition strategy with a volume coil could help to assess the global effects of 

chronic fetal hypoxia. Another limitation of this study is a lack of histological analyses at 

various time points during the brain development of guinea pigs to compare with our MRI 

findings. Further study will be necessary to determine functional consequences of early 

brain abnormalities observed in both MRI and histology analyses, and to confirm the degree 

of apparent brain recovery during development and in later life through the long-term 

assessment of histology and histochemical markers in animal models.

In conclusion, in vivo DTI and T2 mapping can provide parameters to monitor 

developmental abnormalities of neonates from birth to postnatal development in a totally 

noninvasive and longitudinal manner. Non-invasive neuroimaging measurements of 

pathophysiological and structural alterations during postnatal development may provide 

insight into the status of brain damage, neurodevelopmental compromise and long-term 

consequences of intrauterine insults.
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Figure 1. 
Effect of chronic fetal hypoxia on neuronal density and brain injury markers in the fetal 

brain. Photomicrographs of Nissle stained coronal sections of the fetal guinea pig brains in 

the NMX (a, left) and HPX (a, right) groups at the interaural level of 6.72–5.40 mm. 

Neuronal structures with RNA are shown in blue. (b) Neuronal density in cingulate, 

hippocampus, and cortex. Neuronal density was measured from histological sections of each 

region by counting the number of Nissl stained cells per square millimeter. (c) Expression 

levels of mRNA for brain injury indices (EPO and H1F-1α) in hippocampus. (*) indicates 

significant differences (p < 0.05) between the HPX and NMX groups.
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Figure 2. 
MR images of guinea pig brains in the NMX and HPX groups at postnatal day 1 (P1) and 28 

(P28). (a) High resolution T2-weighted images during brain development of guinea pigs. 

The ROI of the hippocampus and a double-headed arrow indicating maximum brain width 

measurements are shown in the NMX P1 image (top, leftmost). The ROIs for T2 sampling 

are shown in the ‘HPX P28’ image: 1) cingulate, 2) hippocampus and 3) cortex, and three 

double-headed blue arrows indicate areas where cortical thickness was measured. (b) RGB 

fractional anisotropy (FA) maps corresponding to high resolution T2-weighted images in (a). 

An ROI of the corpus callosum is shown in the P28 HPX image (middle, rightmost). Colors 

indicate different diffusion directions: red for x (left to right), green for y (caudal-rostral) 

and blue for z (anterior-posterior). (c) Corresponding T2 maps at P1 and P28 of a normoxic 

and a hypoxic brains. The gray scale bar on the right indicates T2 values between 10–100 

ms.
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Figure 3. 
Comparisons of (a) FA and (b) MD values from the corpus callosum of guinea pig brains 

between the NMX (□) and HPX (■) groups at postnatal days 1 (P1), 7 (P7), 28 (P28) and 

42 (P42). (*) indicates significant differences (p < 0.05) between the HPX and NMX groups 

at each age. (#) and (†) indicate significant longitudinal differences (p < 0.05) between P1 

and P28 in the HPX and NMX groups, respectively.
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Figure 4. 
Comparisons of T2 values in (a) the hippocampus and (b) the cortex of guinea pigs brains 

between the NMX (□) and HPX (■) groups at postnatal days 1 (P1), 7 (P7), 28 (P28) and 

42 (P42). (*) indicates significant differences (p < 0.05) between the HPX and NMX groups 

at each age.
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Figure 5. 
Comparisons of structural changes of guinea pig brains in the NMX (□) and HPX (■) 

groups at postnatal days 1 (P1), 7 (P7), 28 (P28) and 42 (P42). Time course of (a) body 

weight, (b) brain width, (c) hippocampal size and (d) cortical thickness are shown from P1 

to P42. (*) indicates significant differences (p < 0.05) between the HPX and NMX groups at 

each age. (#) and (†) indicate significant longitudinal differences (p < 0.05) between P1 and 

P7 to P28 in the HPX and NMX groups, respectively.
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